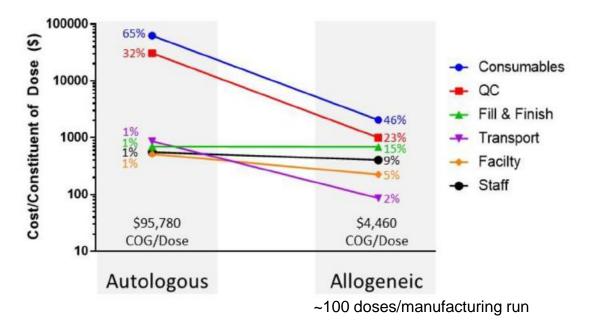


Allo CAR-T

Sattva S. Neelapu, M.D.

Professor and Deputy Chair Department of Lymphoma and Myeloma The University of Texas MD Anderson Cancer Center Houston, Texas, USA

> New Drugs in Hematology Bologna, Italy January 15-17, 2024


Disclosures

Disclosure	Company name
Research Support	Kite/Gilead, BMS, Allogene, Precision Biosciences, Adicet Bio, Sana Biotechnology, Cargo Therapeutics
Advisory Board / Consultant	Kite/Gilead, Sellas Life Sciences, Athenex, Allogene, Incyte, Adicet Bio, BMS, Bluebird Bio, Fosun Kite, Sana Biotechnology, Caribou, Astellas Pharma, Morphosys, Janssen, Chimagen, ImmunoACT, Orna Therapeutics, Takeda, Synthekine, Carsgen, Appia Bio, GlaxoSmithKline, Galapagos
Honoraria	MJH Life Sciences, PeerView, MD Education
Speaker's Bureau	None
Employment	None
Royalties	None
Stocks / Stock Options	Longbow Immunotherapy
Patents	Related to cell therapy

Rationale for allogeneic CAR T-cell therapy

- Potential to improve efficacy as the T-cell fitness is expected to be better than autologous products
- Consistent product quality
- No wait period as they are off-the-shelf
- Improve access at non-transplant centers
- Potential to lower the cost of CAR T-cell therapy
- Long-term B-cell aplasia and hypogammaglobulinemia less likely
- Long-term risk of insertional mutagenesis less likely

Cost of goods/dose: Auto vs. Allo

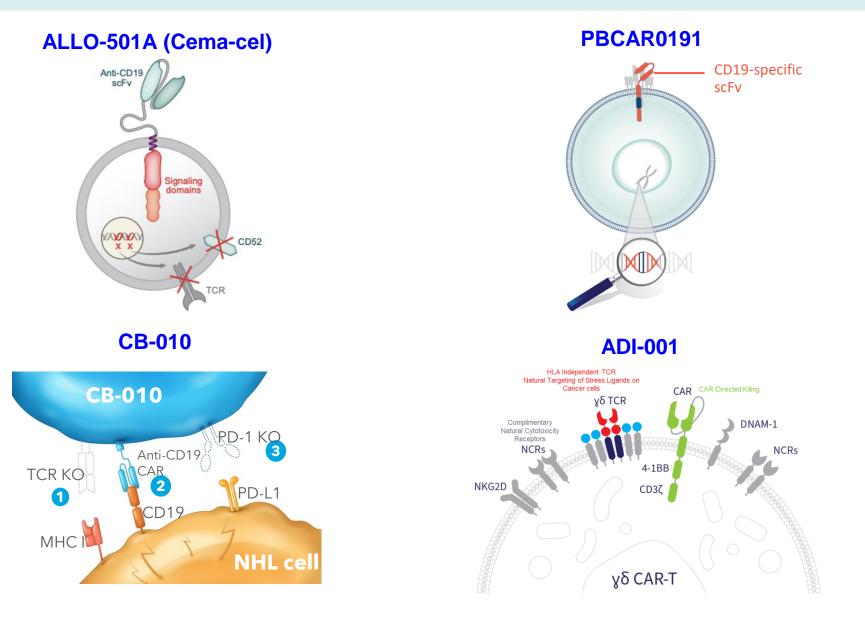
Harrison et al. Cytotherapy, 2019; 21:224-233

Challenges for allogeneic CAR T-cell therapy

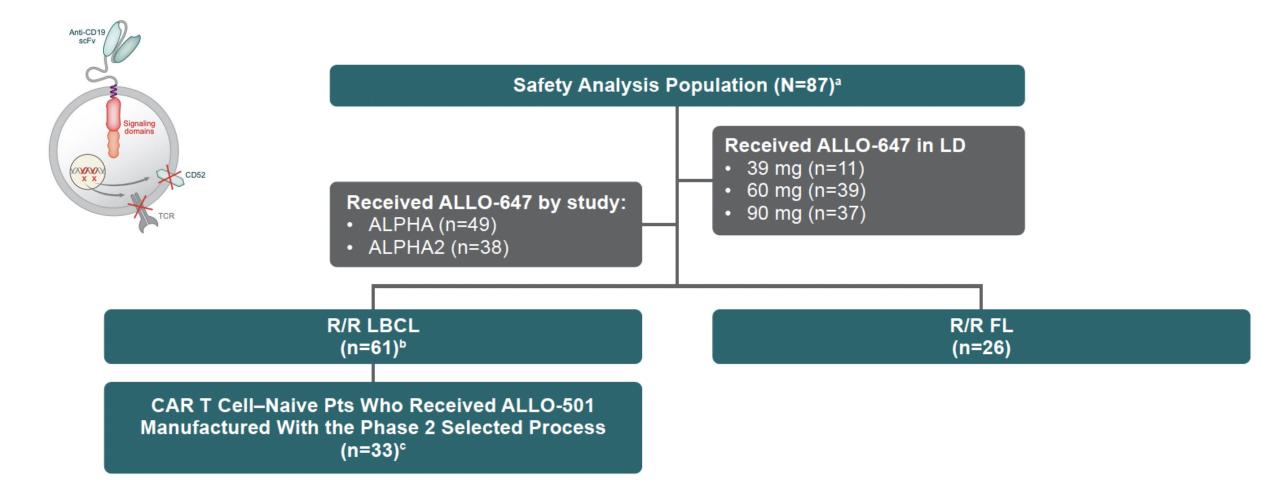
- GVHD
 - \circ Mediated by $\alpha\beta$ T cells
 - $\circ~$ May be overcome by TCR knock-out or by using alternative cell types such as NK cells, NKT, $\gamma\delta$ T cells

- Graft rejection
 - \circ $\,$ Mediated by $\alpha\beta$ T cells and NK cells

Graft rejection by T and NK cells


Allogeneic CAR-T with intensified lymphodepletion

'Brute force approach' for immune evasion: Eliminate host T cells and NK cells for few weeks to allow allo CAR T cells to expand and mediate antitumor effects


Product / Sponsor	Cell type	CAR Target	GVHD prevention	Allorejection strategy	Additional comments
ALLO-501/A Allogene	$\alpha\beta$ T cells	CD19	TCR KO (TALEN)	Anti-CD52 Ab + Standard Cy/Flu	CD52 KO
PBCAR0191 Precision Bio	$\alpha\beta$ T cells	CD19	TCR KO (ARCUS)	Enhanced Cy/Flu	
CB-010 Caribou Biosciences	$\alpha\beta$ T cells	CD19	TCR KO (Cas9 chRNDA)	High-dose Cy/Flu	PD1 KO
ADI-001 Adicet Bio	γδ T cells	CD20	Cell type	Enhanced Cy/Flu	

Allogeneic CAR T products in NHL

(GVHD prevention but no built-in immune evasion)

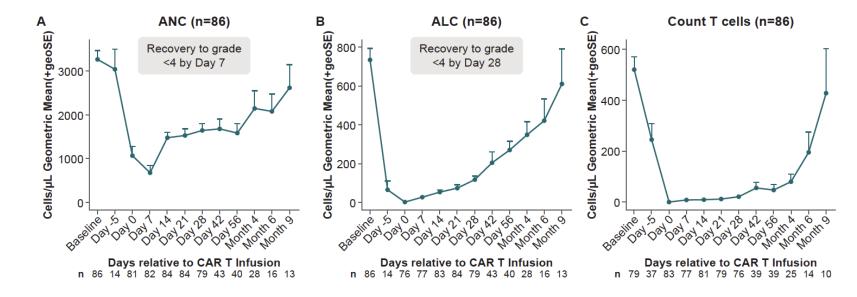
ALPHA 1&2 Studies: Patient disposition

Locke et al. Neelapu, ASH 2023 Abstract 2095

ALPHA 1&2 Studies: Baseline characteristics

		LBCL		
Characteristic	All (N=87)	All LBCL (n=61)	CAR T Cell–Naive Pts Who Received ALLO-501/501A Manufactured With the Phase 2 Selected Process (n=33)	FL (n=26)
Median age, years (range)	64 (31-77)	64 (31-76)	66 (31-76)	64 (34-77)
Stage IV disease, n (%)	51 (59)	40 (66)	19 (58)	11 (42)
ECOG PS 1, n (%)	61 (70)	48 (79)	26 (79)	13 (50)
Baseline LDH >ULN, n (%)	54 (62)	44 (72)	22 (67)	10 (38)
IPI score 3-5, n (%)	43 (49)	35 (57)	19 (58)	8 (31)
Germinal center subtype, n (%)	42 (48)	38 (62)	18 (55)	4 (15)
Double or triple hit, n (%)	23 (26)	20 (33)	10 (30)	3 (12)
Median number of prior regimens, n (range)	3 (2-12)	3 (2-9)	3 (2-8)	4 (2-12)
Prior autologous transplant, n (%)	6 (7)	6 (10)	3 (9)	0
Extranodal disease, n (%)	48 (55)	36 (59)	19 (58)	12 (46)

ALPHA 1&2 Studies: Safety

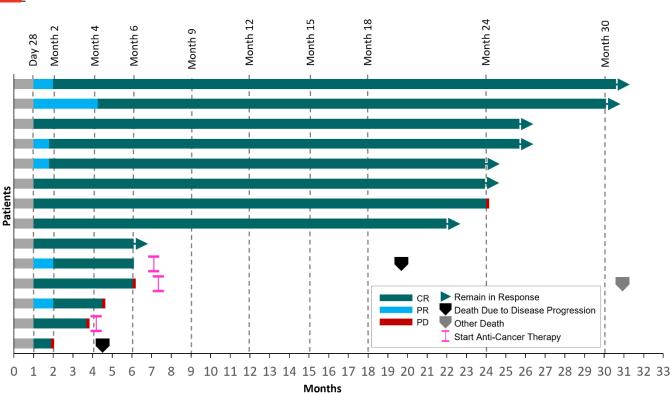

				LBCL				
	All (N	I =8 7)	All LBCL (n=61)		CAR T Cell–Naive Pts Who Received ALLO-501/501A Manufactured With the Phase 2 Selected Process (n=33)		FL (n=26)	
TEAEs, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3	Any Grade	Grade ≥3	Any Grade	Grade ≥3
CRS	21 (24)	1 (1)	17 (28)	1 (2)	8 (24)	0	4 (15)	0
ICANS	1 (1)	0	1 (2)	0	0	0	0	0
Neurotoxicity	24 (28)	3 (3)	19 (31)	3 (5)	13 (39)	2 (6)	5 (19)	0
GvHD	0	0	0	0	0	0	0	0
IRR	48 (55)	5 (6)	31 (51)	4 (7)	16 (48)	3 (9)	17 (65)	1 (4)
Infections	50 (57)	18 (21)	34 (56)	13 (21)	19 (58)	5 (15)	16 (62)	5 (19)

ALPHA 1&2 Studies: Infections (>5% Any grade)

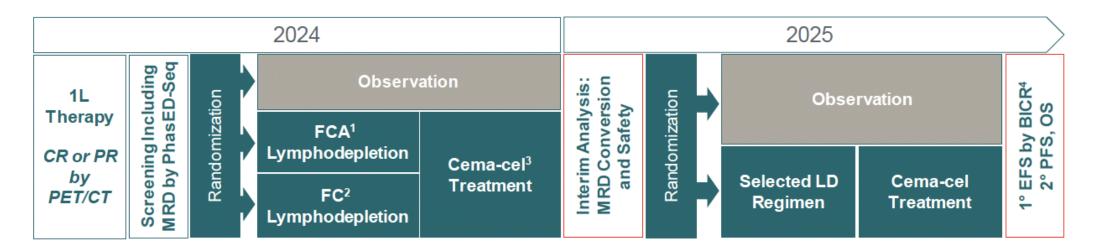
			LBCL					
	All (N	I=87)	All LBCL (n=61)		CAR T Cell–Naive Pts Who Received ALLO-501/501A Manufactured With the Phase 2 Selected Process (n=33)		FL (n=26)	
TEAEs, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Viral infections	34 (39)	12 (14)	22 (36)	9 (15)	13 (39)	4 (12)	12 (46)	3 (12) ^a
CMV	22 (25)	8 (9)	16 (26)	7 (11)	10 (30)	4 (12)	6 (23)	1 (4)
COVID-19	5 (6)	1 (1)	2 (3)	1 (2)	2 (6)	1 (3)	3 (12)	0
Other infections	25 (29)	12 (14) ^b	16 (26)	8 (13)	8 (24)	5 (15)	9 (35)	4 (15) ^b
Pneumonia	8 (9)	6 (7) ^b	4 (7)	4 (7)	4 (12)	3 (9)	4 (15)	3 (12) ^b
Sepsis	5 (6)	5 (6)	4 (7)	3 (5)	2 (6)	2 (6)	1 (4)	1 (4)
Bacterial infections	10 (11)	4 (5)	9 (15)	4 (7)	3 (9)	2 (6)	1 (4)	0
Fungal infections	7 (8)	2 (2)	5 (8)	1 (2)	2 (6)	0	2 (8)	1 (4)

ALPHA 1&2 Studies: Prolonged cytopenias (Grade \geq 3)

		LB	LBCL		
Time	All (N=87)	All LBCL (n=61)	CAR T Cell–Naive Pts Who Received ALLO-501/501A Manufactured With the Phase 2 Selected Process (n=33)	FL (n=26)	
Day 28, n (%)	25 (29)	20 (33)	11 (33)	5 (19)	
Day 56, n (%)	17 (20)	14 (23)	7 (21)	3 (12)	
Day 121 (Month 4), n (%)	13 (15)	11 (18)	6 (18)	2 (8)	

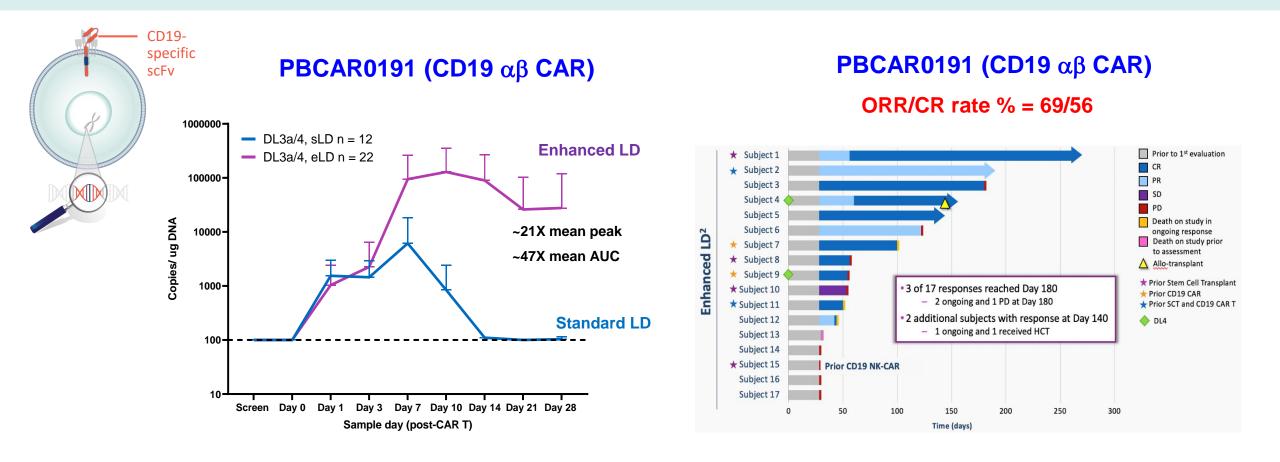


Locke et al. Neelapu, ASH 2023 Abstract 2095


ALPHA 1&2 Studies: Efficacy

CAR naïve LBCL

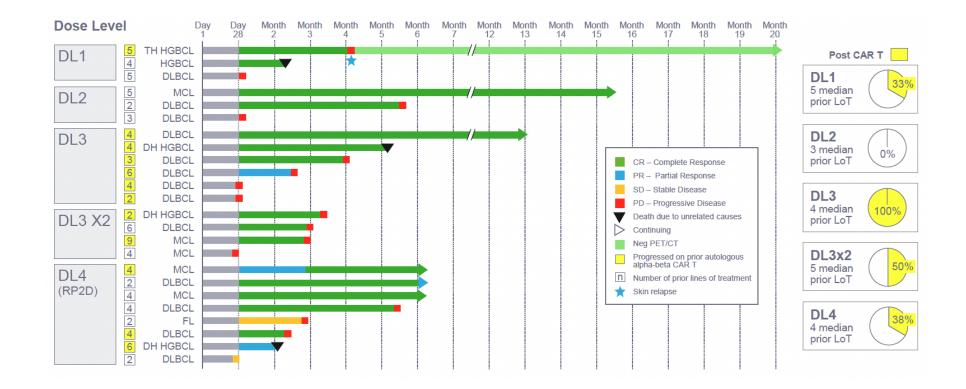
	All (N=33)	Phase 2 Regimen (N=12)
ORR, n (%)	19 (58)	8 (67)
CRR, n (%)	14 (42)	7 (58)
6 months CRR*, n (%)	10 (30)	5 (42)

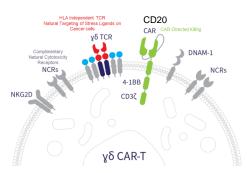

ALPHA 3: Phase 3 study in first line LBCL

ALPHA3 Startup Underway, Enrollment Projected to Commence Mid-2024

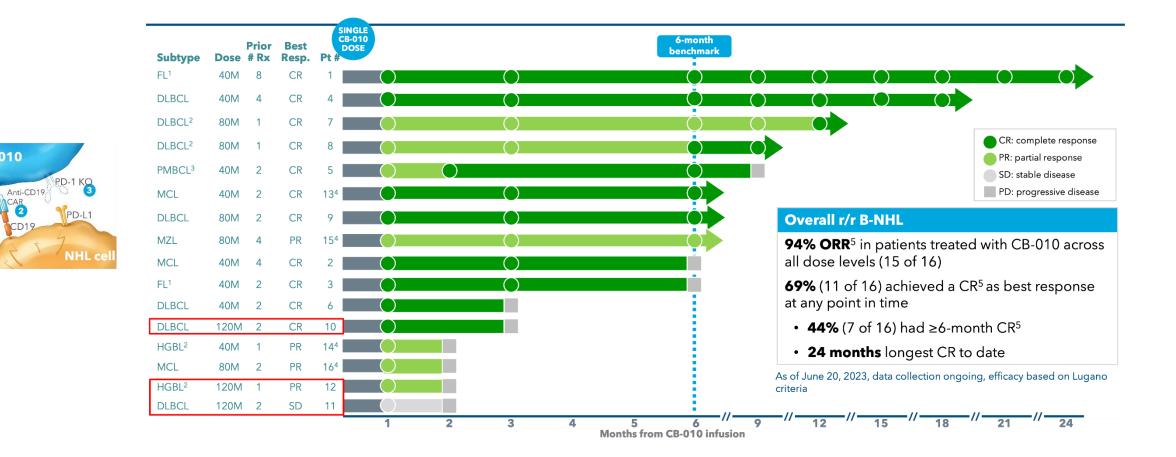
- All LBCL potentially eligible: no upfront risk assessment (e.g., IPI score, double-hit, HGBCL)
- Approximately 110 patients in observation and treatment arms
 - All patients treated with "Selected LD Regimen" during LD selection will count toward pivotal sample
- Continuous enrollment planned, no pause in enrollment for LD regimen selection
- Expected median time to EFS in observation arm ~8 months

PBCAR0191: Safety, efficacy, and cellular kinetics in r/r LBCL




- No GvHD, Grade ≥3 NE or CRS
- Higher rate of grade ≥3 infections with enhanced LD

ADI-001: Safety and efficacy


N = 24 ORR = 71%; CR rate = 63% 6-month CR rate – 33% at DL4

- Grade \geq 3 CRS = 4%
- Grade \geq 3 ICANS = 4%
- No GVHD

CB-010: Efficacy

CB-010

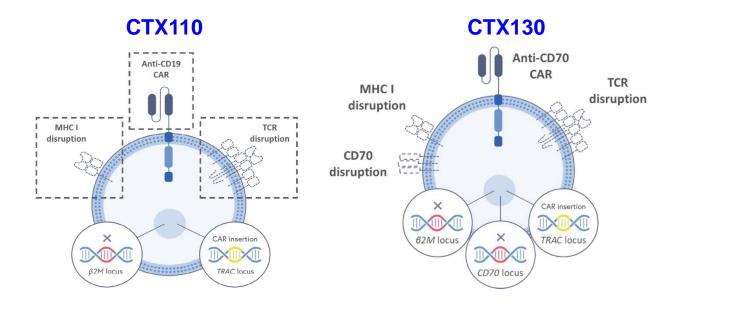
CAR 2

CD1

TCR KO

0

MHC

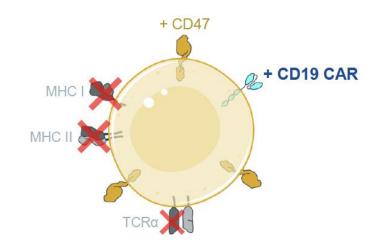

Allogeneic CAR-T with hypoimmune strategy

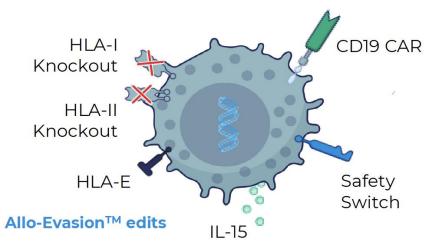
'Refined approach' for immune evasion: Make the allo CAR T cells invisible to host T and/or NK cells to allow their expansion and mediate antitumor effects

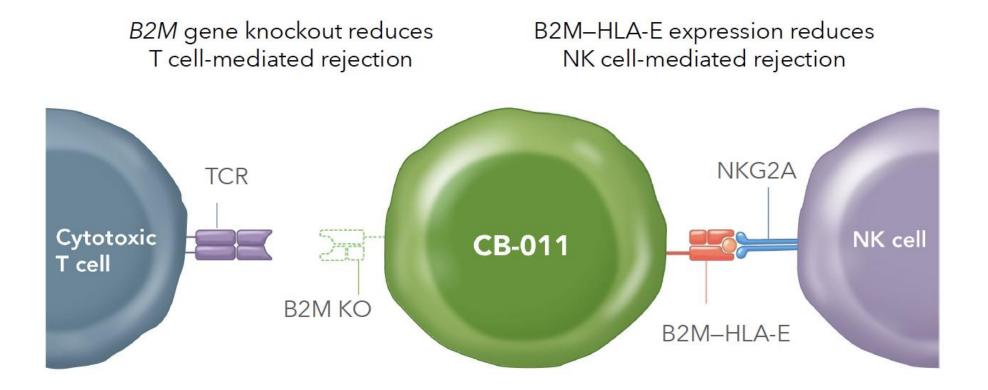
Product / Sponsor	Cell type	CAR Target	GVHD prevention	Allorejection strategy	Additional comments
CTX110 CRISPR Therapeutics	$\alpha\beta$ T cells	CD19	TCR KO	B2M KO	Standard Cy/Flu
CTX130 CRISPR Therapeutics	$\alpha\beta$ T cells	CD70	TCR KO	B2M KO	Standard Cy/Flu CD70 KO
KUR-502 Athenex	iNKT cells	CD19	Cell type	B2M & CD74 down regulation	Standard Cy/Flu IL-15 transgene
CNTY-101 Century Therapeutics	iPSC CAR NK	CD19	Cell type	B2M KO, CIITA KO, & HLA-E overexpression	Standard Cy/Flu IL-15 transgene
SC291 Sana Biotechnology	$\alpha\beta$ T cells	CD19	TCR KO	B2M KO, CIITA KO, & CD47 overexpression	Standard Cy/Flu

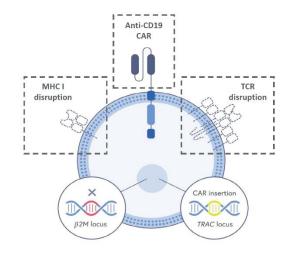
Allogeneic CAR T products in NHL

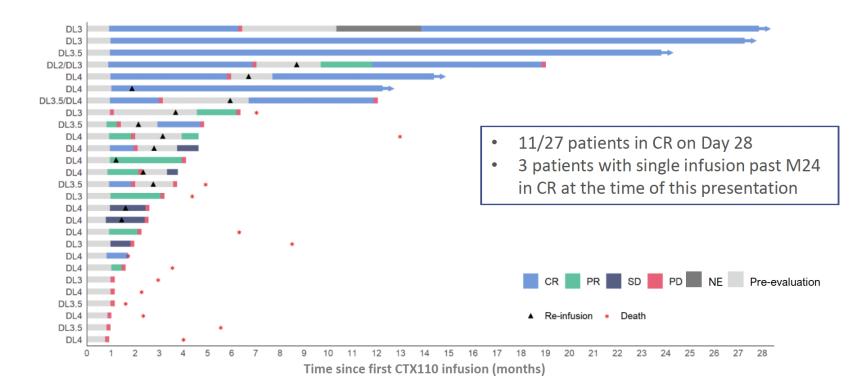
(GVHD prevention with built-in immune evasion)



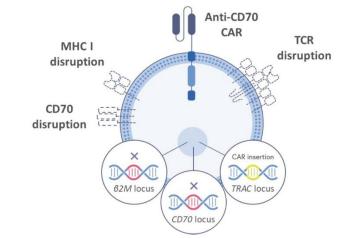

KUR-502

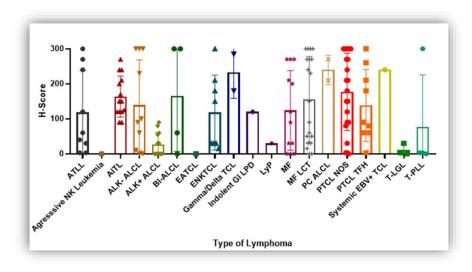




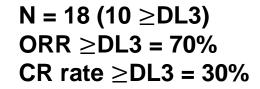

Immune evasion of host T and NK cells

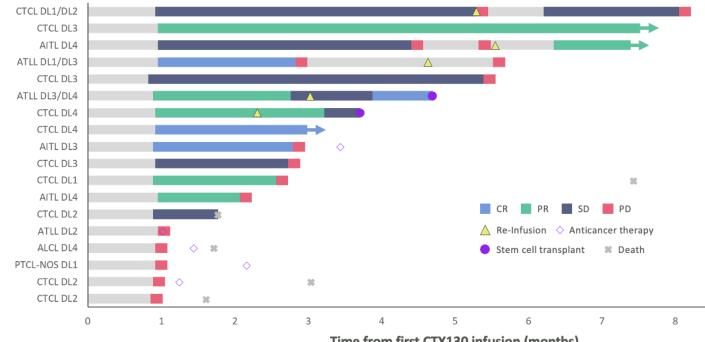
CTX110: Safety and efficacy in LBCL


≥1 Infusion at DL1-DL2 DL3 **DL3.5** DL4 Cell dose 30-100x10⁶ 300x10⁶ 450x10⁶ 600x10⁶ DL≥3 (CAR+ T cells) N=6² N=6 N=6 N=14 N=27 Overall Response Rate (ORR), n (%) 1 (0.16) 4 (66.7) 4 (66.7) 9 (64.3) 18 (66.7) 1 (0.16) 2 (33.3) 4 (66.7) 11 (40.7) CR 4 (28.6) PR 0 2 (33.3) 0 5 (35.7) 7 (25.9)

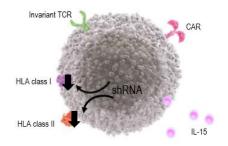


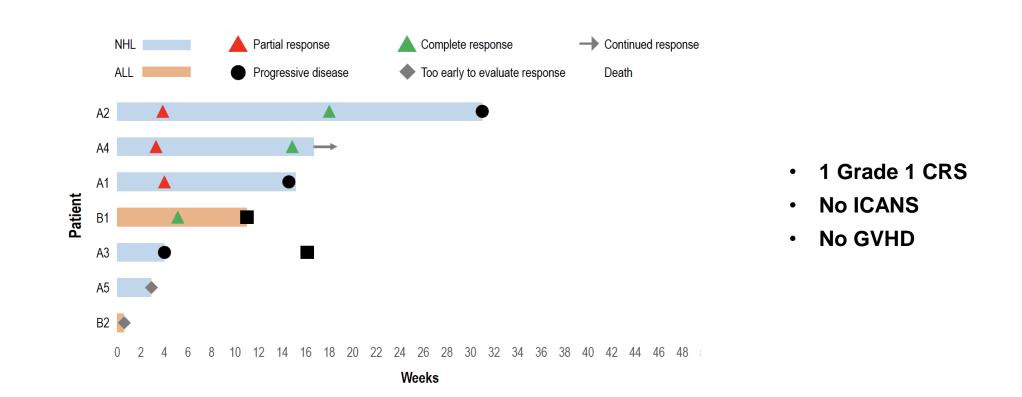
• No grade \geq 3 CRS


- Grade \geq 3 ICANS = 6%
- No GVHD

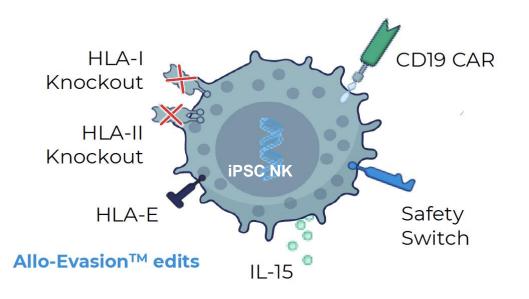

CTX130: Safety and efficacy in T cell lymphomas

- No grade \geq 3 CRS ٠
- No grade \geq 3 ICANS
- No GVHD ٠

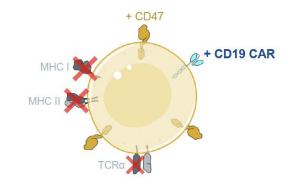


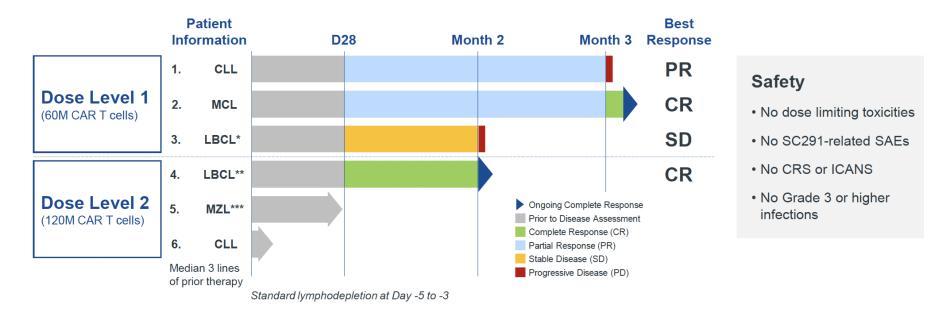


Time from first CTX130 infusion (months)


Slide courtesy: Swami Iyer lyer et al, EHA 2022

KUR-502 (iNKT): Safety and efficacy




CNTY-101: Safety and efficacy

N = 7 (DL1 and DL2) 5 LBCL, 1 FL, 1 MZL ORR = 3 (42%) CR rate = 2 (29%) No major toxicities

SC291: Safety and efficacy

Allogeneic CAR T-cell therapy: Summary

- CRS and ICANS similar to autologous CAR T
- GVHD can be prevented by TCR KO or using alternative cell types such as NK, NKT, or $\gamma\delta$ T cells
- Response rates in LBCL with allogeneic CAR T is comparable to autologous CAR T regardless of the cell type ($\alpha\beta$, $\gamma\delta$, NK, iNKT)
- But durability of responses is suboptimal
- Persistence for 1 month is likely not sufficient to maintain durability of responses
- More effective approaches to prevent immune rejection that are needed to improve in vivo expansion and persistence of allogeneic CAR products and durability

Thank you for your attention!

Email: sneelapu@mdanderson.org